Exploring the Use of Thermal Infrared Imaging in Human Stress Research
نویسندگان
چکیده
High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints). Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol) in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers) did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.
منابع مشابه
Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملتشخیص سرطان پستان به کمک تصویربرداری حرارتی در حوزه پزشکی و هوش مصنوعی: مقاله مروری
Breast cancer is the most common cancer in women and one of the leading of death among them. The high and increasing incidence of the disease and its difficult treatment specifically in advanced stages, imposes hard situations for different countries’ health systems. Body temperature is a natural criteria for the diagnosis of diseases. In recent decades extensive research has been conducted to ...
متن کاملEvaluation of Thermal Imaging in the Diagnosis and Classification of Varicocele
Introduction: A varicocele is the abnormal dilation and tortuosity of venous plexus above the testicles. The pattern of abnormal heat distribution in the scrotum can be detected through thermal imaging, which is a distant, non-contact, and non-invasive method. The aim of the present study is to detect and grade varicocele. Materials and Methods: This study was conducted on 50 patients with high...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملRadiofrequency Electromagnetic Fields: Carcinogenic and Other Biological Effects
In the electromagnetic spectrum, structural damage to living tissues per unit of absorbed energy tends to increase with the decrease of a wavelength which is evident not only for ultraviolet and ionizing radiation but also for the infrared and visible light. By causing thermal damage after absorbing energies that would be harmless for radiofrequency electromagnetic fields (EMF), tissues are eve...
متن کامل